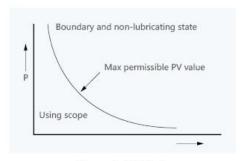
Intentions, perfect. It began in customer needs, and finally customer satisfaction!

Quality - is to get the trust of weight is the key to winning the competition, is the starting point for endless most demand, value and dignity.

Related Design


PV value bearings

1. Definition

- O Load Pressure P:Load pressure equals to the result gained by making the value of load pressure divide the vertical shade projected by the load-shouldering surface of the bushing (Unit: N/mm²).
- O Running Velocity V: Defined running velocity as the relative linear velocity against the mating surface (Unit: N/mm²).
- $\bigcirc \ PVV alue: Define \ PV \ value \ as the \ result gained \ by \ multiplying \ the \ load \ value \ P \ and \ the \ velocity \ V \ (Unit: \ N/mm^2-m/s).$
- O Permissible PV value:Max permissible value shall be smaller than the value gained by multiplying the max permissible pressure and the max permissible velocity. (Unit: N/mm²m/s).

2. Max permissible PV value

The bushing can run for a short time when achieves its max PV value. It's the running service life requirement that decides the requirement for the value. In bushing design, we require that the max permissible PV value shall be smaller than the value gained by multiplying the max permissible load pressure and the max permissible running velocity.

Max permissible PV value

	BUSHING	PRESSURE, P PN/mm² {kgf/cm²}	VELOCITY, V m/s {m/min}	PV Value N/mm²•m/s {kgf/cm²•m/min}
Sleeve Bushing	1.Rotating motion in single direction of radial journal	F dL {10°F}	$ \frac{\frac{\pi dn}{10^3}}{\left\{\frac{\pi dn}{10^3}\right\}} $	$ \frac{\pi Fn}{10^{3}L} $ $ \left\{\frac{\pi Fn}{10L}\right\} $
	2.Oscillating motion	F dL (10°F) (dL)	$ \frac{dC \theta}{10^3} $ $ \left\{\frac{\pi dc \theta}{180 \times 10^3}\right\} $	$ \frac{FC \theta}{10^3 L} $ $ \left\{ \begin{array}{l} \pi Fc \theta \\ 180 \times 10^2 L \end{array} \right\} $
	3.Reciprocating motion	F dt. (10²F) dL)	$ \frac{2cS}{10^3} \\ \left\{ \frac{2cS}{10^3} \right\} $	2FcS 10³dL {FcS} {5dL}
Thrust Washer	1.Rotating motion	$ \begin{array}{c} 4F \\ \pi (D^2 - d^2) \\ \left\{ \begin{array}{c} 400F \\ \pi (D^2 - d^2) \end{array} \right\} \end{array} $	$\begin{array}{c} \frac{\piDn}{10^3} \\ \left\{\frac{\piDn}{10^3}\right\} \end{array}$	4FDn 10³(D²-d²) { 4FDn 10(D²-d²)
	2.Oscillating motion	$\begin{cases} \frac{4F}{\pi (D^2 - d^2)} \\ \frac{400F}{\pi (D^2 - d^2)} \end{cases}$	$ \frac{DC \theta}{10^3} $ $ \left\{\frac{\pi Dc \theta}{180 \times 10^3}\right\} $	$ \frac{4FDC \theta}{10^{3} \pi (D^{2} - d^{2})} \\ \left\{ \frac{4FDc \theta}{180 \times 10(D^{2} - d^{2})} \right\} $
Flange Bushing	1.Sleeve Bushing	Use above formulas for sleeve bushing (L=I+t)	Use above formulas for sleeve bushing	Use above formulas for sleeve bushing
	2.Flange surface	Use above formulas for thrust whsher	Use above formulas for thrust whsher	Use above formulas for thrust whsher
Slide Plate	1.Reciprocating motion	F BL {10°F} WL}	$ \frac{\frac{2cS}{10^3}}{\left\{\frac{2cS}{10^3}\right\}} $	2FG 10 ⁸ BL {FG}
F : load				N {kgf}
N : Rotations				S-1{rpm}
c : Cylindrical velo	city of reciprocating or oscillati	ing motion		S-1{cpm}
S : Stroke distance				
θ : Oscillating angl	e			rad { }
d : Bushing ID				mm²{mm²}
D : Bushing OD				
L : Bushing length				mm ² (mm ²
W : Stirp/Slide way	width			mm²{mm²